Search results for "charge reversal"

showing 1 items of 1 documents

Controlling the cohesion of cement paste

2005

The main source of cohesion in cement paste is the nanoparticles of calcium silicate hydrate (C-S-H), which are formed upon the dissolution of the original tricalcium silicate (C(3)S). The interaction between highly charged C-S-H particles in the presence of divalent calcium counterions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. Traditional double-layer theory based on the Poisson-Boltzmann equation becomes qualitatively incorrect in these systems. Monte Carlo (MC) simulations in the framework of the primitive model of electrolyte solution is then an alternative, where ion-ion correlations are properly included. In addition to divalent calciu…

Inorganic chemistryIonic bonding02 engineering and technologyElectrolyteCement pasteCSH010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundlawElectrochemistryGeneral Materials Sciencecalcium silicate hydrateCalcium silicate hydrateDissolutionionic correlationsSpectroscopyion-ion correlations[CHIM.MATE] Chemical Sciences/Material chemistrySurfaces and Interfaces[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsPotassium sulfateSilicate0104 chemical sciencesC-S-HPortland cementchemistryChemical engineering[ CHIM.MATE ] Chemical Sciences/Material chemistryCalcium silicatenanoparticles0210 nano-technologycement cohesioncharge reversal
researchProduct